最近,RAG技术逐渐走红,但文档解析这一关键环节却不为人知。说究竟,无论经常使用如许初级的检索和生成技术,最终成果都取决于文档自身的品质。假设文档消息不全或格局凌乱,那么再怎样优化检索战略、嵌入模型或大型言语模型(LLMs)也无济于事。
本文引见三种盛行的文档提取战略,并以亚马逊2024年第一季度报告中的表格解析为例,展现这些战略的实践运行。
1 文本解析器:基础工具
文本解析器曾经开展多年,这些工具能够读取文档并从中提取文本。经常出现的工具备PyPDF、PyMUPDF和PDFMiner。接上去,重点引见PyMUPDF,并经过LlamaIndex集成的PyMUPDF来解析特定页面。以下是相应的代码示例:
from llama_index.core.schema import TextNodefrom llama_index.core.node_parser import SentenceSplitterimport fitzfile_path = "/content/AMZN-Q1-2024-Earnings-Release.pdf"doc = fitz.open(file_path)text_parser = SentenceSplitter(chunk_size=2048,)text_chunks = [] #Cfor doc_idx, page in enumerate(doc):page_text = page.get_text("text")cur_text_chunks = text_parser.split_text(page_text)text_chunks.extend(cur_text_chunks)nodes = [] #Dfor idx, text_chunk in enumerate(text_chunks):node = TextNode(text=text_chunk,)nodes.append(node)print(nodes[10].text)
PyMUPDF在提取文本方面体现低劣,但文本的格局解决并不现实。这在后续的生成环节中或者会形成疑问,尤其是当大型言语模型难以识别文档结构时。
以下是亚马逊公司的财务报表摘要:
AMAZON.COM, INC.Consolidated Statements of Comprehensive Income(in millions)(unaudited)Three Months EndedMarch 31,20232024Net income$3,172 $10,431Other comprehensive income (loss):Foreign currency translation adjustments, net of tax of $(10) and $30386(1,096)Available-for-sale debt securities:Change in net unrealized gains (losses), net of tax of $(29) and $(158)95536Less: reclassification adjustment for losses (gains) included in “Other income(expense), net,” net of tax of $(10) and $0331Net change128537Other, net of tax of $0 and $(1)—1Total other comprehensive income (loss)514(558)Comprehensive income$3,686 $9,873
接上去,让咱们看看OCR在文档解析中的体现。
2 OCR技术:图像识别
from PIL import Imageimport pytesseractimport sysfrom pdf2image import convert_from_pathimport ospages = convert_from_path(file_path)i=10filename = "page"+str(i)+".jpg"pages[i].save(filename, 'JPEG')outfile ="page"+str(i)+"_text.txt"f = open(outfile, "a")text= str(((pytesseract.image_to_string(Image.open(filename)))))text = text.replace('-\n', '')f.write(text)f.close()print(text)
OCR(如下所示)能更好地捕捉文档文本和结构。
AMAZON.COM, INC.Consolidated Statements of Comprehensive Income(in millions)(unaudited)Three Months EndedMarch 31,2023 2024Net income $ 3,172 §$ 10,431Other comprehensive income (loss):Foreign currency translation adjustments, net of tax of $(10) and $30 386 (1,096)Available-for-sale debt securities:Change in net unrealized gains (losses), net of tax of $(29) and $(158) 95 536Less: reclassification adjustment for losses (gains) included in “Other income(expense), net,” net of tax of $(10) and $0 33 1Net change 128 231Other, net of tax of $0 and $(1) _— 1Total other comprehensive income (loss) 514 (558)Comprehensive income $ 3,686 $ 9,873
最后,来看看智能文档解析。
3 智能文档解析(IDP):结构化提取
智能文档解析(IDP)是一项新兴技术,旨在从文档中提取所无关系消息,并以结构化格局出现。市面上有多种IDP工具,如LlamaParse、DocSumo、Unstructured.io以及Azure Doc Intelligence等。
这些工具的独特点在于,它们都融合了OCR(光学字符识别)、文本提取技术、多模态大型言语模型(LLMs),以及将内容转换为markdown格局的才干,以成功文本的高效提取。以LlamaIndex推出的LlamaParse为例,经常使用前须要先失掉API密钥,而后便可以经过API接口来解析文档。
import getpassimport osfrom copy import deepcopyos.environ["LLAMA_CLOUD_API_KEY"] = getpass.getpass()from llama_parse import LlamaParseimport nest_asyncionest_asyncio.apply()documents = LlamaParse(result_type="markdown").load_data(file_path)def get_page_nodes(docs, separator="\n---\n"):"""Split each document into page node, by separator."""nodes = [] #Cfor doc in docs:doc_chunks = doc.text.split(separator)for doc_chunk in doc_chunks:node = TextNode(text=doc_chunk,metadata=deepcopy(doc.metadata),)nodes.append(node)return nodesnodes_lp = get_page_nodes(documents)print(nodes_lp[10].text)
上方的内容以markdown格局结构化,应该是目前结构最好的示意。
# 亚马逊公司# 综合收益表| |Three Months Ended March 31, 2023|Three Months Ended March 31, 2024||---|---|---||Net income|$3,172|$10,431||Other comprehensive income (loss):| | ||Foreign currency translation adjustments, net of tax of $(10) and $30|386|(1,096)||Available-for-sale debt securities:| | ||Change in net unrealized gains (losses), net of tax of $(29) and $(158)|95|536||Less: reclassification adjustment for losses (gains) included in “Other income (expense), net,” net of tax of $(10) and $0|33|1||Net change|128|537||Other, net of tax of $0 and $(1)|—|1||Total other comprehensive income (loss)|514|(558)||Comprehensive income|$3,686|$9,873|
不过,有一点须要留意,上述内容疏忽了一些关键的高低文消息。特意是,解析后的文档中不再蕴含“millions”(百万)这样的单位标识,这或者会造成生成器LLM无了解时发生曲解。
4 论断
要优化你的RAG运行功能,重点在于选用适合的文档解析器。各种解析战略各有所长,也各有局限:
最终,选用哪种解析器,须要依据你的详细运行场景来选择。最佳做法是尝试不同的解析器,评价它们在你的运行中的体现,而后选用最满足你需求的那一个。有时刻,联合多种方法或者会更有效。始终实验和调整,以期到达最佳的RAG运行成果。
本文转载自,作者: