企业宣传,产品推广,广告招商,广告投放联系seowdb

RAG R²AG 将检索消息融入RAG 优化问答系统准确性

文章指出,传统RAG经过向量检索排序召回与Query关系的片段,经过prompt生成回复,LLMs与检索器之间存在语义鸿沟(LLMs难以有效应用检索器提供的消息)。上方来看看这篇文章引入检索消息增强RAG功能的trick。

RAG和的比拟。驳回可训练的-Former来弥合检索器和LLM之间的语义鸿沟

方法

模型架构

检索特色提取

这样存在一个疑问,这些示意不能间接经常使用,由于繁多的示意不可捕捉到用于LLM生成的交互特色。

因此,为了顺应各种检索器,须要将 不同空间中的示意转换为一致格局的特色 。提出三种相似计算方法来对这些示意启动对齐,从而获取检索特色。

检索感知揭示

步骤:

这一模块重要是将检索消息作为额外的常识输入,增强了 LLM 对文档的了解才干。

训练战略

重要是训练-Former 和 LLM 的对齐训练。

试验

参考文献

原文链接:​ ​​ ​

© 版权声明
评论 抢沙发
加载中~
每日一言
不怕万人阻挡,只怕自己投降
Not afraid of people blocking, I'm afraid their surrender